2015-08-16 00:00:00 +0000

weak变量的生命周期及具体实现方法

本文转自weak的生命周期:具体实现方法,看着不错,有助于理解OC就收藏了。

我们都知道weak表示的是一个弱引用,这个引用不会增加对象的引用计数,并且在所指向的对象被释放之后,weak指针会被设置的为nilweak引用通常是用于处理循环引用的问题,如代理及block的使用中,相对会较多的使用到weak

之前对weak的实现略有了解,知道它的一个基本的生命周期,但具体是怎么实现的,了解得不是太清晰。今天又翻了翻《Objective-C高级编程》关于__weak的讲解,在此做个笔记。

我们以下面这行代码为例:
{
    id __weak obj1 = obj;
}

当我们初始化一个weak变量时,runtime会调用objc_initWeak函数。这个函数在Clang中的声明如下:

id objc_initWeak(id *object, id value);
其具体实现如下:
id objc_initWeak(id *object, id value)
{
    *object = 0;
    return objc_storeWeak(object, value);
}
示例代码轮换成编译器的模拟代码如下:
id obj1;
objc_initWeak(&obj1, obj);

因此,这里所做的事是先将obj1初始化为0(nil),然后将obj1的地址及obj作为参数传递给objc_storeWeak函数。

objc_initWeak函数有一个前提条件:就是object必须是一个没有被注册为__weak对象的有效指针。而value则可以是null,或者指向一个有效的对象。

如果value是一个空指针或者其指向的对象已经被释放了,则objectzero-initialized的。否则,object将被注册为一个指向value__weak对象。而这事应该是objc_storeWeak函数干的。objc_storeWeak的函数声明如下:

id objc_storeWeak(id *location, id value);
其具体实现如下:
id objc_storeWeak(id *location, id newObj)
{
    id oldObj;
    SideTable *oldTable;
    SideTable *newTable;
    ......
    // Acquire locks for old and new values.
    // Order by lock address to prevent lock ordering problems. 
    // Retry if the old value changes underneath us.
 retry:
    oldObj = *location;
    oldTable = SideTable::tableForPointer(oldObj);
    newTable = SideTable::tableForPointer(newObj);
    ......
    if (*location != oldObj) {
        OSSpinLockUnlock(lock1);
#if SIDE_TABLE_STRIPE > 1
        if (lock1 != lock2) OSSpinLockUnlock(lock2);
#endif
        goto retry;
    }
    if (oldObj) {
        weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
    }
    if (newObj) {
        newObj = weak_register_no_lock(&newTable->weak_table, newObj,location);
        // weak_register_no_lock returns NULL if weak store should be rejected
    }
    // Do not set *location anywhere else. That would introduce a race.
    *location = newObj;
    ......
    return newObj;
}

我们撇开源码中各种锁操作,来看看这段代码都做了些什么。在此之前,我们先来了解下weak表和SideTable

weak表是一个弱引用表,实现为一个weak_table_t结构体,存储了某个对象相关的的所有的弱引用信息。其定义如下(具体定义在objc-weak.h中):

struct weak_table_t {
    weak_entry_t *weak_entries;
    size_t    num_entries;
    ......
};

其中weak_entry_t是存储在弱引用表中的一个内部结构体,它负责维护和存储指向一个对象的所有弱引用hash表。其定义如下:

struct weak_entry_t {
    DisguisedPtr referent;
    union {
        struct {
            weak_referrer_t *referrers;
            uintptr_t        out_of_line : 1;
            ......
        };
        struct {
            // out_of_line=0 is LSB of one of these (don't care which)
            weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
        };
    };
};

其中referent是被引用的对象,即示例代码中的obj对象。下面的union即存储了所有指向该对象的弱引用。由注释可以看到,当out_of_line等于0时,hash表被一个数组所代替。另外,所有的弱引用对象的地址都是存储在weak_referrer_t指针的地址中。其定义如下:

typedef objc_object ** weak_referrer_t;

SideTable是一个用C++实现的类,它的具体定义在NSObject.mm中,我们来看看它的一些成员变量的定义:

class SideTable {
private:
    static uint8_t table_buf[SIDE_TABLE_STRIPE * SIDE_TABLE_SIZE];
public:
    RefcountMap refcnts;
    weak_table_t weak_table;
    ......
}

RefcountMap refcnts,大家应该能猜到这个做什么用的吧?看着像是引用计数什么的。哈哈,貌似就是啊,这东东存储了一个对象的引用计数的信息。当然,我们在这里不去探究它,我们关注的是weak_table。这个成员变量指向的就是一个对象的weak表。

了解了weak表和SideTable,让我们再回过头来看看objc_storeWeak。首先是根据weak指针找到其指向的老的对象:

oldObj = *location;

然后获取到与新旧对象相关的SideTable对象:

oldTable = SideTable::tableForPointer(oldObj);
newTable = SideTable::tableForPointer(newObj);

下面要做的就是在老对象的weak表中移除指向信息,而在新对象的weak表中建立关联信息:

if (oldObj) {
    weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
}
if (newObj) {
    newObj = weak_register_no_lock(&newTable->weak_table, newObj,location);
    // weak_register_no_lock returns NULL if weak store should be rejected
}

接下来让弱引用指针指向新的对象:

*location = newObj;

最后会返回这个新对象:

return newObj;

objc_storeWeak的基本实现就是这样。当然,在objc_initWeak中调用objc_storeWeak时,老对象是空的,所有不会执行weak_unregister_no_lock操作。

而当weak引用指向的对象被释放时,又是如何去处理weak指针的呢?当释放对象时,其基本流程如下:

  • 调用objc_release
  • 因为对象的引用计数为0,所以执行dealloc
  • dealloc中,调用了_objc_rootDealloc函数
  • _objc_rootDealloc中,调用了object_dispose函数
  • 调用objc_destructInstance
  • 最后调用objc_clear_deallocating

我们重点关注一下最后一步,objc_clear_deallocating的具体实现如下:

void objc_clear_deallocating(id obj) 
{
    ......
    SideTable *table = SideTable::tableForPointer(obj);
    // clear any weak table items
    // clear extra retain count and deallocating bit
    // (fixme warn or abort if extra retain count == 0 ?)
    OSSpinLockLock(&table->slock);
    if (seen_weak_refs) {
        arr_clear_deallocating(&table->weak_table, obj);
    }
    ......
}

我们可以看到,在这个函数中,首先取出对象对应的SideTable实例,如果这个对象有关联的弱引用,则调用arr_clear_deallocating来清除对象的弱引用信息。我们来看看arr_clear_deallocating具体实现:

PRIVATE_EXTERN void arr_clear_deallocating(weak_table_t *weak_table, id referent) {
    {
        weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
        if (entry == NULL) {
            ......
            return;
        }
        // zero out references
        for (int i = 0; i < entry->referrers.num_allocated; ++i) {
            id *referrer = entry->referrers.refs[i].referrer;
            if (referrer) {
                if (*referrer == referent) {
                    *referrer = nil;
                }
                else if (*referrer) {
                    _objc_inform("__weak variable @ %p holds %p instead of %p\n", referrer, *referrer, referent);
                }
            }
        }
        weak_entry_remove_no_lock(weak_table, entry);
        weak_table->num_weak_refs--;
    }
}

这个函数首先是找出对象对应的weak_entry_t链表,然后挨个将弱引用置为nil。最后清理对象的记录。

通过上面的描述,我们基本能了解一个weak引用从生到死的过程。从这个流程可以看出,一个weak引用的处理涉及各种查表、添加与删除操作,还是有一定消耗的。所以如果大量使用__weak变量的话,会对性能造成一定的影响。那么,我们应该在什么时候去使用weak呢?《Objective-C高级编程》给我们的建议是只在避免循环引用的时候使用__weak修饰符。

另外,在clang中,还提供了不少关于weak引用的处理函数。如objc_loadWeak, objc_destroyWeak, objc_moveWeak等,我们可以在苹果的开源代码中找到相关的实现。等有时间,我再好好研究研究。

参考

《Objective-C高级编程》1.4: __weak修饰符

Clang 3.7 documentation – Objective-C Automatic Reference Counting (ARC)

apple opensource – NSObject.mm